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LEVER TO THE EDITOR 

The non-local 8 problem and (2 + 1)-dimensional soliton 
equations 

L V Bogdanov and S V Manakov 
L D Landau Institute for Theoretical Physics, Moscow V-334, USSR 

Received 3 December 1987 

Abstract. A method of constructing (2 + 1)-dimensional non-linear integrable equations 
and their solutions by means of the non-local 2 problem is developed. A ‘basic set’ of 
equations is obtained by using different normalisations of the non-local 2 problem and the 
Lagrangianrof the set is found. Other integrable equations, which are degenerate cases of 
the basic set, are also Lagrangian. 

A method of constructing (2 + 1)-dimensional non-linear integrable equations and 
broad classes of their solutions by means of a non-local Riemann problem (NRP)  [ l ]  
or a non-local a problem ( NP) [2] ( N P  is more general, incorporating NRP) was proposed 
in [3,4]. This method uses NP with a specific dependence of the kernel on extra 
variables x,, 1 s i s 3. One can use it to obtain a class of solutions of some non-linear 
partial differential equations in x,, the class depending on a functional parameter, 
namely the kernel of NP. For kernels sufficiently small in some norm, solutions can 
be obtained as perturbation series, while for degenerate kernels solutions can be 
obtained explicitly. In [3,4], however, the study of integrable equations brought results 
only in simple special cases and the study of a generic case met with considerable 
technical difficulties. In this letter we show how these are overcome by choosing diferent 
normalisations of NP. It had not been noticed earlier that N P  admits intrinsically different 
normalisations, probably because, for the more familiar local Riemann problem used 
in ( 1  + 1) dimensions, all normalisations are gauge equivalent. Thus we emphasise that 
NP admits such different nbrmalisations in (2+ 1) .  Moreover, these allow us to get an 
integrable set of equations for a generic case in explicit form. We call it the ‘basic set’ 
of equations. This set is formally Lagrangian and conserved currents can be obtained 
for it-the first two are local, but the higher-order currents are non-local. It resembles 
the three-wave interaction equations in (2 + 1)  but with a special matrix structure, and 
other integrable equations are degenerate cases of it. In particular, by using the 
Kadomtsev-Petviashvili ( KP) equations as an example, we show that the Lagrangian 
structure for a degenerate case can be obtained from the Lagrangian of the basic set 
in some limit. (Comparable results in (1 + 1) have been obtained by Zakharov and 
Mikhailov [5].) We discuss the possibilities of finding decreasing solutions with the 
help of NP and the question of reductions. As a simple and interesting example of the 
use of different normalisations we treat the Vesselov-Novikov equation. Two different 
normalisations allow us to introduce a modified Vesselov-Novikov equation as well, 
and this is a (2 + 1)-dimensional analogue of the modified Korteweg-de Vries equation 
(MKdV). 
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Our approach is based on the non-local a problem for complex-valued square, p x p ,  
matrix functions of a complex variable A. Let $ ( A ) ,  7 ( A )  be such matrix functions. 
We refer to the following equation as the non-local a problem 'normalised by 7 ( A ) ' :  

(S+ i)$ = a7 $ / (A)  - 7 0 )  +o, I A l +  Co. ( 1 )  

Here ;= a/aX (the bar means complex conjugate) and l? is an integral operator acting 
from the right in the sense of matrix multiplication: 

( & ) ( A )  = j j $(P)R(A,  P )  d P  A dfi. 

When 7 ( A )  = 1,  definition (1) is wholly consistent with the usual definition. We shall 
consider only rational normalisation functions 7 ( A )  in this letter. 

We introduce the a-' operator 

(:-'4)(A) = (27ri)-' + ( A ' ) ( A ' -  A)- '  dA' A dX' II 
so that (1) is 

4+S-'& = -pi7 4 = $ - 7 -+O, IAl  +0O. (2) 

Equation (2) is a Fredholm integral equation of the second kind in 4 = $ - 7 ( 4  is 
the 'regular part' of $; it is continuous with 4 + 0, [ A  I -+ 00). When k is small enough 
in some norm, (2) is solved uniquely for some class of functions. We can therefore 
assume NP equation ( 1 )  is uniquely solvable and therefore that 

(a+ lt)* = 0 I A l + 0 O  +$(A)  = 0. (3) 

The non-local Riemann problem (NRP)  is some limit of NP, (1 ) .  Let a continuous 
oriented curve y be set on a complex plane. Take a kernel of N P  ( 1 )  of the form 

R(A, P I  = Sy(A)Ry(A ,  P ) S Y ( P )  (4) 

(where & ( A )  is a S function picking out points on y ) .  The solution IC, of (1) with 
kernel (4) is rational outside y and will have boundary values $+, $- on y. After 
regularising Sy(p)  we obtain from N P  (1) with kernel (4) the NRP 

Evidently NRP normalised by 7 ( A )  has 4 = $ - 7 analytic outside y with 4 + 0, IA I -+ CO. 

We introduce a dependence of R ( A , p )  (and consequently of $) on additional 
variables x,, 1 4 is 3, through 

aR(A, P, x)/% = K ( P ) R  - R K ( A ) .  ( 6 )  

K , ( A )  are commuting matrix-valued functions and x is the set x, (which, for example, 
are x,y, t later); the normalisation may depend in an arbitrary way on x. A general 
solution of the three equations ( 6 )  is 

R(A, P, x) = ~ ~ P ( K ( P . ) ~ , ) R ~ ( ~ ,  P )  exp(-K(A)x,) (7) 

(in which summation over i is understood) while ( 6 )  is formally 

[D, ,  $1 = 0 ( 8 )  
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with D,$ = a$/ax, + $K, .  From ( 1 )  and (8)  one has 

(a+i)D,$=[[d, D,]$+D&. (9) 
In this letter we restrict ourselves to the important case of rational K , ( A )  for which 

R defined by (7) has singularities at the poles of K,(A) .  We remove these singularities 
by an appropriate choice of Ro(A, p )  so that R(A, p, x) decreases at A, (the pole of 
K , )  faster than (A-A, ) " ,  (p-A, )"Vp,  x, n. From ( 1 )  it follows that & 5 = & $ - 7 7 )  
decreases at A, faster than ( A  - A,)" Vp, n. In this case, when v(A) is a rational function 
the solution of N P  Dl$ is also normalised by a rational function. 

To prove this note that (9) can be transformed to 

(2 + i ) D ,  $ = a( VK,)  + f#GK, (10) 
and one can then transform @Ki through the formulae 

;(A-")= ~ ( - l ) " + ' d " - ' S ( A ) / ( n  - l ) !  

+(A)d"S(h)=(- l )"  k = O  S ( A ) (  i ) a k & a " k .  

From these it follows that baK, is a sum of 6 functions and their derivatives. Then, 
[d-'((&$)K,) - rpK, is a rational function while the right-hand side of (10) is obviously 

a($, +a-'((&h)K,) - V K , )  = ap (13) 
(say) and the solution Dl$ of NP is normalised by the rational function p (whose 
coefficients depend on x). The normalisation p is a rational part of D,$. Indeed it is 
such a rational function that [d(D,$-p) = K l a 4  is a regular function. Since [d+ 
decreases at the poles of K ,  faster than ( A  - A p ) "  Vp, n, the right-hand side is regular 
and D, $ - p is regular. 

Thus, the operators D, make it possible to multiply solutions of N P  ( 1 )  taken with 
kernel (7). The number of solutions that can be obtained this way then proves to 
increase with increasing powers of the operators D, faster than the dimension of the 
normalisation divisor (i.e. of the number of poles in p weighted by their multiplicity) 
and this induces a linear dependence between solutions which allows us to construct 
differential equations for the solutions of NP. However, first we derive a 'basic set of 
equations' by appeal to the statement (3) on the uniqueness of solutions of NP. 

So far, rational K, (A)  with poles at one or two points and a single normalisation 
of N P  have been used to construct integrable equations by means of NP. Here we 
consider the generic case when the K,(A)  each have an arbitrary number n of simple, 
and distinct, poles: 

where I = (L), 1 G a G n, is a vector index. The formal expression on the right is labelled 
by index i and summation over a is understood. The a, are a set of commuting 
matrices, while in what follows ijk will be any permutation of indices 123. 

We introduce the solutions $,(x,A) of N P ( ~ )  normalised by ( A  -A,)- ' .  Since 
(k$)(A) decreases as A + A ,  faster than ( A  - A , ) "  V$, I, n: 

m 

* / ( ~ , A ) A + A ,  + ( A - A , ) - ' +  C + ' ; l ' ( x ) (~ -~ , ) "  
(15) 

f l = O  
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The functions Di$J are also solutions Of N P  (1). The normalisation of these solutions 
contains only the first-order poles at the points A I ,  A j  (and j # i). One can check by 
using (15) that $= Di$j -a f  ( A J  - $$)ul$f  satisfies the conditions of state- 
ment (3) on the unique solvability of NP. Hence $J and $I  are linearly dependent 
and satisfy (with i # j )  

(16) 

(Note that the repeated index I implies summation over a for this i; repeated index 
J implies no such summation.) The leading order of expansion of (16) as A + A K  

( i  # j  # k) yields the equation in the $52(x) (we drop superscript 0) 

Di q j  - a / ( A j  - A / ) - ' $ j  - $$' = 0. 

If the different permutations ijk of the indices are taken into account, (17) is a closed 
set of 6n2 equations: this is what we call the 'basic set' of equations. Normalised 
solutions of NP give us special solutions of this basic set dependent on the functional 
parameter &(A, p ) .  For degenerate &(A, p )  explicit forms of solution can be obtained 
and these will depend on the behaviour of the exponential functions in (7). 

are now complex-valued functions and 
the uI are complex numbers. One can obtain solutions t,bIJ(x) satisfying the boundary 
condition t,bIJ + ( A J  - A I ) - '  as 1x1 +CO if the exponents in (7) are imaginary, i.e. K, (A)  - 
K , ( p ) = K , ( p ) - K , ( h ) .  This condition defines a subset in the space C2 outside 
which the kernel of N P  &(A, p )  is to be zero. Thus, e.g., when ial, AJ are real it follows 
that Im A = 0, Im p = 0 and it is sufficient to use the non-local Riemann problem on 
the real axis to obtain solutions of (17) satisfying the boundary conditions just given. 

The structure of the exponents in (7) also determines the reductions. In terms of 
the kernel R(A, p, x) the simplest reductions are f ( A ,  p ) R ( A ,  p, x) = R(Al(A, p ) ,  
pl(A, p ) ,  x) orf(A, pu)R(A, p, x) = R ( A l ( A ,  p ) ,  pl(A, p ) ,  x). To satisfy either of these 
at arbitrary x the exponents in the left- and right-hand parts of these expressions must 
be equal so that K , ( A ) - K , ( p ) =  Kl(Al) -Kf(pJ or K , ( A ) - K , ( p ) =  I?f(Al)-Z?g(pl). 
These conditions put rigid limitations on the map A, p + A , ( &  p ) ,  pl(A, p ) .  

The basic set of equations (17) is forrhally Lagrangian with Lagrangian density 

To see this, consider a scalar case. The 

Z ( x )  = Tr{sgn(ijk)[~($lJaJ$Jl , k a f  - $Jf  a l $ I J , k a J )  

+ a K  [ ( A I  - A K ) - ' $ I J a J  $ J l  a1 - ( A J  - A K  ) - '$JI  aI $ I J a J  1 

S f ( a l $ l K a K $ K J a J $ J l  - a f $ l J a J $ J K a K $ K l  )I) (18) 

where sgn( ijk) is the sign of the permutation ( i jk ) ,  and summation is over a in common 
indices I as well as over permutations of the indices ijk. The Lagrangian (18) was 
constructed by analogy with the three-wave interaction equations. 

Expansion of (16) about A j  gives a set of non-local (in general) conserved currents: 
only the first and second currents are local. Here we confine attention to these two 
currents, but it is easy to obtain recursion relations for the whole set by the same 
argumcnts. Expansion of (16) about A j  to leading order is ( $ J j ; ,  = a$JJ/axi) 
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J is not summed but Z is. By differentiating (19) with respect to xk and the same 
equation, but with i changed to k, with respect to xi  we obtain the first conserved 
current as 

and summation is over J’  and J” ( J ” # J ) .  By choosing A and using ( 2 2 )  we obtain, 
as for (19), that the second current satisfies 

a 

- aJ$JK aK $KJa.J8’(AJ - A,“)-’ - aJ+JKaK $KJ.,l 

= - Tr[a,+JK aK a,, +m ( A K  - A,,)-’ 
ax, 

(23) 

where summation is over Z, K ,  J’ ,  J” ,  J, ( J ” # J ) .  Notice that both the basic set of 
equations (17) and the conserved currents for them are obtained from (16), i.e. equations 
(16) contain complete information about both the equations of motion and the 
conserved currents. 

Earlier we noted that the operators D, allow us to multiply solutions of NP (1) and 
when there arises a linear dependence between such solutions it is possible to obtain 
differential equations for the normalised solutions of NP. In fact, it proves that, if 
some linear combination of solutions to N P  obtained through the D, is equal to zero, 
it can be represented as a linear combination of derivatives D, acting on the expression 
on the left-hand side of (16). This allows us to construct integrable equations with 
higher-order derivatives. 

Let us consider solutions of N P  of the form 
N 

p.4. r = 0 
p (x, A ) = c U, ( P, 4, r, x) 0: 0; D ‘k $1 (4 A 1 + c p 

where CP means cyclic permutations of i, j ,  k. Such expressions will be identical if all 
coefficients u I ( p ,  q, r, x) are equal. Define (for i # j )  

e./ (4 A 1 = D, $.I - a1 ( A./ - A I I-’ 4, - $,I ai $1. (24) 

Then (16) means that Pi, = 0. We prove the theorem 

We use two lemmas. 
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Lemma 1. 

DrDj4D;$,(x,A)= c u r ( n , x ) D 1 $ , ( x , A )  
N 

n = O  

N 

P.9.r = 0 
+ .  1 uiJ(p ,  q, r, x)D$'Dj4DfPiJ(x, A ) + c P .  

Summations are over the same indices I or J with a running from 1 to n in each case. 
The proof is by induction: formula (24) means all expressions of the form Di$, can 
be eliminated from the left-hand side. 

Lemma 2. 
N N 1 u , ( n , x ) D ~ J / , ( x , h ) + c ~ = O J  c u , ( n , x ) D : $ , ( x ,  A ) = O .  

n = O  n=O 

Only Dy$, (x ,  A )  has at A, a pole of order N +  1. This implies that the coefficient 
U, ( N ,  x) = 0. The lemma then follows by induction. 

Evidently the two lemmas immediately imply the theorem stated in (24). The theorem 
allows us to construct integrable equations with higher-order derivatives: details will 
be given elsewhere. 

To integrate (i.e. find solutions of) the basic set of equations we have used K , ( A )  
of the form (14). By 'degenerating' these one can obtain arbitrary rational K , ( A )  in 
appropriate limits. Taking KP as an example we show that the Lagrangian for this 
degenerate case can be obtained from Lagrangian (17) of the basic set in such a limit. 

To integrate KP choose Dl = d/ax  + A - ' ,  D2 = a/dy + A-2 ,  D3 = a / a t  + A-3 .  Let 
$'(x, y, t, A )  be normalised by A-'. Then, after some work, one can show from (17) 
that U = $"(x,  y, t )  satisfies 

( 2 7 )  
a 

- ( U , - ~ u x x x + ~ U x U , ) = ~ U y y  
d X  

which is the KP equation in the usual form for U = U,. Here we calculate the Lagrangian. 
Multiple poles of K , ( A )  can be obtained as a limit from simple poles. Consider 0: 
of the form 

D;  =a/ax+A-' D ; = a / a y + ( 2 ~ ) - ' [ ( A  - & ) - ' - ( A  + E ) - ' ]  

D; = a / a t  + ( 2 2 - ' [  ( A  + E ) - '  + ( A  - E ) - '  - 2 ~ - ' ] .  

For E + 0 these three D, integrate K P  but as defined they have coinciding poles. 
To remove these make the linear transformation of coordinates 

Di = D1 D; = $ ( E ~ D ~  + ED*+ 01) =d/ap  + ( A  - E ) - '  

( 2 8 )  
D; = ~ ( E ~ D ,  -  ED^+ 0') = a /aq  + ( A  + E ) - ' .  

The functions K : ( A )  now have simple poles each at different points 0, E, - E .  Denote 
these by indices 1,2,3,  respectively. The Lagrangian (18 )  for the case ( 2 8 )  is 
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To obtain the Lagrangian of K P  from (29) in the limit E + 0 it is necessary to express 
all functions in (29) in terms of the expansion of ql(x, y,  t, A )  as A + 0 by using the 
the basic set of equations (17) for the case (28). Two of these, namely 

(30) 
1 

$ 1 3 : p + z  $13-$12$23=0 

make it possible to exclude $23, $32 from the Lagrangian and put it in the form (omitting 
any total derivatives) 

+2E-'($13;p$12;q/$l~ $113). (32) 

4 2 3 ( l f E 4 1 2 ) = t ( ( P 1 2 S 4 1 3 ) + E 4 1 3 ; p  (33) 

432(-1+&413) =-:(412+413)+&412;q (34) 

Expressions (30)-(32) can be rewritten in terms of functions with subtracted sin- 
gularities = - (Aj - Ai) - '  as 

respectively. If one writes the expansion of 412 and 413 in powers of E as 

412= 41:)~+41:)~2+41:)~3+0(~3) 
413= u - 4 j : ) E + 4 j : ) E 2 - - ~ : ) E 3 + ~ ( E 3 )  

T(X, y,  t )  = ~ E ~ ( - u , u ,  +Ex- u ~ ; + $ u ; ) + o ( E ~ ) .  

the expansion of the Lagrangian (35) is 

(36) 

To eliminate 4:;) one uses dr$',:)/dx = t u ,  + uu, - iuxx which arises at zero order in E 

directly from the basic set of equations. The expression in parentheses in (36) is a 
well known Lagrangian for the K P  equation (27). Thus we have obtained the Lagrangian 
of K P  as a limit from the Lagrangian (18) of the basic set of equations. 

The Vesselov-Novikov equation is a simple and interesting example of the use of 
different normalisations. It is one of the (2+l)-dimensional analogues of the K d v  

equation in (1 + 1) and its Lax L operator is a true two-dimensional Schrodinger 
operator [6]. It has been integrated using one normalisation of NP. But the use of the 
two normalisations natural to this problem allows us to construct a set of two Lagrangian 
equations, reductions of which are the Vesselov-Novikov equation and a second 
equation we call the modified Vesselov-Novikov equation, as well as the Miura 
transformation between the solutions of these two equations [7,8]. In this way the 
analogy with the (1 + 1)-dimensional case in which K d v  and M K d v  are obtained as 
reductions from a pair of equations is made both clear and complete. 

Consider 

D, = a / a z  + iA-' D,=a/aF+iA D3 = a / a t  + i ( A 3  + A -3). (37) 
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The solutions of NP +'(A,  z, t )  and I + ~ ~ ( A ,  z, t )  are normalised by A - '  and 1, respectively. 
One then finds f =  +lz(z, t )  and g = qb2,(z, t )  satisfy the pair of coupled equations, with 
boundary condition J ;  g + I as JzI + 00, 

(a, +a3+e3)f+3(af)a-'a(fg)+3(af)a-'a(fg) +3fa-'a(g;Sf)+3fa-'a(gaf) = 0 (38a) 

(a, + a3 +a3)g + 3'(5g)a-'$fg) + 3(ag)a-'a(fg) + 3ga-'a(fag) + 3ga-'a(fsg) = o 
with a = a/az, $3 a l a i ;  a ,  = alat. The Lagrangian of this pair is 

(38b) 

2 ( z ,  t )  =i{g(a,+a3+a3)f+3(fg- l)[a-'e(gaf)+a-'a(gaf)]-cc} (39) 

in which cc is complex conjugate. The reduction of (38) by g = 1 yields the Vesselov- 
Novikov equation 

(a, +a3 + a 3 y +  3a(fZ-'af) + 3e(fa-'zff) = 0. (40) 

(a ,+a3+a3)f+3(af)a- 'a(~f)+3(~f)(a- 'a(~f))+3fa- 'a(~af)+3fa- 'a(~af)  = o (41) 

On the other hand, the reduction f = g gives the modified Vesselov-Novikov equation 

The Lagrangian of the modified Vesselov-Novikov equation (41) is obtained from (39) 
by the reduction f =  g. For the Vesselov-Novikov equation (40) the Lagrangian (39) 
under the reduction g = 1 is equal to zero. 

We are grateful to Professor V E Zakharov for useful discussions. We are also grateful 
to Professor R K Bullough and Dr Zhuhan' Jiang for their constructive critcisms of 
the material presented in this letter. 
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